
Hazy Mind 3D Engine – XNA Series

A tutorial series written in C# using the Microsoft XNA Framework

Michael Schuld – mike@thehazymind.com – http://www.thehazymind.com

Tutorial 6 - Rendering Real Models

Tutorial content is intellectual property of Hazy Mind Interactive and is not to be reproduced in any form without express written consent

Rendering Real Models

Putting Together the Basic Model Object
Thanks to the content pipeline, the ease of loading and using meshes in our games is greatly simplified

from the old methods. Using our current object class and a couple of the interfaces we have created for

the object system, getting a model or two on screen becomes incredibly easy to do. Here is what a basic

model class looks like:

using HMEngine.HMCameras;

using HMEngine.HMEffects;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Content;

using Microsoft.Xna.Framework.Graphics;

namespace HMEngine.HMObjects {

 public class HMModel : HMObject {

 private readonly string myAsset;

 private Model myModel;

 public HMModel(string asset) {

 myAsset = asset;

 Scaling = new Vector3(1);

 }

 public override void LoadContent(GraphicsDevice myDevice, ContentManager myLoader) {

 myModel = myLoader.Load<Model>(myAsset);

 }

 public override void Render(GraphicsDevice myDevice, EffectPass pass) {

 }

 public override void UnloadContent() { }

 }

}

This basic class will take in a model asset name in the constructor and appropriately load the content the

same way all of the other do (thanks to the IHMLoadable interface). The Render function for this one

gets a bit complicated because we are using our own shader effects. If you wanted to simply use the

default effect for all the models in game for a quick solution, you could do that as well, but I find it much

easier to produce quality demos when you have full control over the rendering pipe, so we will be

modifying the normal method of drawing our meshes to use our own shader manager. The rendering

code itself looks pretty similar to that of the SDK demos, but we leave shader handling to the engine.

Render Method
The rendering this time is a bit more complicated than other objects, but not terrible. We have to loop

through each mesh and part of the meshes and set the device texture and update the World matrix

based on any bone transformations of the parent mesh. Beyond that it looks like always:

public override void Render(GraphicsDevice myDevice, EffectPass pass) {

P a g e | 2

Tutorial 6 - Rendering Real Models

 Matrix world =

 HMCameraManager.ActiveCamera.World *

 Matrix.CreateScale(Scaling) *

 Matrix.CreateFromQuaternion(Rotation) *

 Matrix.CreateTranslation(Position);

 foreach (ModelMesh mesh in myModel.Meshes) {

 if (null != HMEffectManager.ActiveShader.Effect.Parameters["World"]) {

 HMEffectManager.ActiveShader.Effect.Parameters["World"].SetValue(world * mesh.ParentBone.Transform);

 }

 // Each mesh is made of parts (grouped by texture, etc.)

 foreach (ModelMeshPart part in mesh.MeshParts) {

 // Change the device settings for each part to be rendered

 myDevice.SetVertexBuffer(part.VertexBuffer);

 myDevice.Indices = part.IndexBuffer;

 // Make sure we use the texture for the current part also

 myDevice.Textures[0] = ((BasicEffect)part.Effect).Texture;

 // Finally draw the actual triangles on the screen

 myDevice.DrawIndexedPrimitives(

 PrimitiveType.TriangleList, 0, 0, part.NumVertices, part.StartIndex, part.PrimitiveCount

);

 }

 }

}

Checking that it Works
The best way to see if everything we added is working is to just stick a model in the scene and look

around at it. For starters, we will need to add an existing .x or .fbx model to the Content folders in the

demo. Make sure you copy all the textures that go along with the model you use into the same folder as

the mesh. They don’t need to be added into the actual project folders within XNA Game Studio, but they

do need to be in the same folder as the model file so the framework can find and compile them together

with the mesh. After you have added the correct files, simply go to the demo class and place a new

model object into the scene and set up the shader and scaling you may want; I added a colored sphere:

// In HMDemo

private static readonly HMModel model = new HMModel("Content/Models/sphere");

// In HMDemo.Main

model.Shader = "TT";

quad.Position = new Vector3(1, 0, 0);

model.Position = new Vector3(-1, 0, 0);

// Existing Objects

HMObjectManager.AddObject("sphere", model);

That’s all. What were you expecting, a ton of work? Remember, the guys on the XNA Team are making

sure that using the framework is as painless as possible, and as far as I am concerned, being able to set

custom shaders on loaded models with that little code is pretty painless. My sphere loaded in simply as

a plain model with no lighting at all, but that is because it was created without any materials or textures.

We will go about making our own shader to handle the lighting and such similar to the BasicEffect

included in the framework soon to get our hands a little dirty inside the rendering pipeline.

